Contact mechanics I: basics

Georges Cailletaud1 Stéphanie Basseville1,2
Vladislav A. Yastrebov1

1Centre des Matériaux, MINES ParisTech, CNRS UMR 7633
2Laboratoire d’Ingénierie des Systèmes de Versailles, UVSQ

WEMESURF short course on contact mechanics and tribology
Paris, France, 21-24 June 2010
Table of contents

1 Introduction

2 Basic knowledges

3 Contact mechanics of elastic solids

4 Normal contact of inelastic solids

5 Contact of inhomogeneous bodies
Plan

1. Introduction
2. Basic knowledges
3. Contact mechanics of elastic solids
4. Normal contact of inelastic solids
5. Contact of inhomogeneous bodies
Short historical sketch

Use and opposition to friction

- Frictional heat - lighting of fire - more than [40,000 years ago].
- Ancient Egypt - lubrication of surfaces with oil [5,000 years ago].
Short historical sketch

First studies on contact and friction

- Leonardo da Vinci [1452-1519]
 first friction laws and many other trobological topics;

- Issak Newton [1687]
 Newton’s third law for bodies interaction;

- Guillaume Amontons [1699]
 rediscovered friction laws;

- Leonhard Euler [1707-1783]
 roughness theory of friction;
First studies on contact and friction

- Charles-Augustin de Coulomb [1789]
 friction independence on sliding velocity and roughness; the influence of the time of repose.

- Heinrich Hertz [1881-1882]
 the first study on contact of deformable solids;

- Holm [1938], Ernst and Merchant [1940], Bowden and Tabon [1942]
 difference between apparent and real contact areas, adhesion theory.
Practice VS theory

- **1900**: Theory is several steps behind the practice

Theory
Practice
1940: Theory is behind the practice
1960: Theory catches up with practice
1990: The trial-and-error testing becoming more and more difficult. Theory leads practice.
Plan

1. Introduction
2. Basic knowledges
3. Contact mechanics of elastic solids
4. Normal contact of inelastic solids
5. Contact of inhomogeneous bodies
Surface interaction properties

Surface properties:

- Coefficient of friction
- Adhesion
- Wear parameters
Surface properties are not fundamental

- Coefficient of friction 😞
- Adhesion 😞
- Wear parameters 😞
Surface interaction properties

Surface properties are not fundamental

- Coefficient of friction 😞
- Adhesion 😞
- Wear parameters 😞

Fundamental properties:

- **Volume:**
 - Young’s modulus;
 - Poisson’s ratio;
 - shear modulus;
 - yield stress;
 - elastic energy;
 - thermal properties.

- **Surface:**
 - chemical reactivity;
 - absorption capabilities;
 - surface energy;
 - compatibility of surfaces;
Surface interaction properties

Surface properties **are not fundamental**

- Coefficient of friction 😞
- Adhesion 😞
- Wear parameters 😞

Fundamental properties:

- **Volume:**
 - Young’s modulus;
 - Poisson’s ratio;
 - shear modulus;
 - yield stress;
 - elastic energy;
 - thermal properties.

- **Surface:**
 - chemical reactivity;
 - absorption capabilities;
 - surface energy;
 - compatibility of surfaces;
Surface interaction properties

Surface properties are not fundamental

- Coefficient of friction 😞
- Adhesion 😞
- Wear parameters 😞

Fundamental properties are interdependent 😞

- Volume:
 - Young’s modulus;
 - Poisson’s ratio;
 - shear modulus;
 - yield stress;
 - elastic energy;
 - thermal properties.

- Surface:
 - chemical reactivity;
 - absorption capabilities;
 - surface energy;
 - compatibility of surfaces;
Surface interaction properties

Surface properties are not fundamental

- Coefficient of friction 😞
- Adhesion 😞
- Wear parameters 😞

More fundamental properties

- solids are made of atoms;
- atoms are linked by bonds;
- many of the volume and surface properties are the properties of the bonds.

Fundamental properties are interdependent 😞

- Volume:
 - Young’s modulus;
 - Poisson’s ratio;
 - shear modulus;
 - yield stress;
 - elastic energy;
 - thermal properties.

- Surface:
 - chemical reactivity;
 - absorption capabilities;
 - surface energy;
 - compatibility of surfaces;
Surface interaction properties

Surface properties are not fundamental

- Coefficient of friction 😐
- Adhesion 😐
- Wear parameters 😐

More fundamental properties

- solids are made of atoms;
- atoms are linked by bonds;
- many of the volume and surface properties are the properties of the bonds.

Fundamental properties are interdependent 😐

- Volume:
 - Young’s modulus;
 - Poisson’s ratio;
 - shear modulus;
 - yield stress;
 - elastic energy;
 - thermal properties.

- Surface:
 - chemical reactivity;
 - absorption capabilities;
 - surface energy;
 - compatibility of surfaces;
Material properties interdependence

Young's modulus and yield strength interdependence [Rabinowicz,]
Material properties interdependence

Penetration hardness and yield stress interdependence

Young’s modulus and melting temperature interdependence

[Rabinowicz,]
Material properties interdependence

Thermal coefficient of expansion and Young's modulus interdependence [Rabinowicz,]

Surface energy and hardness interdependence [Rabinowicz,]
Real area of contact depends on

- **normal load:**
 real area of contact is proportional to the normal load; coefficient of proportionality is inverse of the material hardness;

- **sliding distance:**
 contact area might be $3(!)$ times as great as the value before shear forces were first applied;

- **time:** (for creeping materials)
 real area of contact increases with time;

- **surface energy:**
 the higher the surface energy, the greater the area of contact.

[Ref: Course of Julian Durand on surface roughness]
Real area of contact

Real area of contact depends on

- **normal load:**
 real area of contact is proportional to the normal load; coefficient of proportionality is inverse of the material hardness;

- **sliding distance:**
 contact area might be $3(\!)$ times as great as the value before shear forces were first applied;

- **time:** (for creeping materials)
 real area of contact increases with time;

- **surface energy:**
 the higher the surface energy, the greater the area of contact.

\[A_r \sim F \]

A_r - real contact area, F - applied load

[Ref: Course of Julian Durand on surface roughness]
Real area of contact

Real area of contact depends on

- **normal load:**
 real area of contact is proportional to the normal load; coefficient of proportionality is inverse of the material hardness;

- **sliding distance:**
 contact area might be $3(!)$ times as great as the value before shear forces were first applied;

- **time:** (for creeping materials)
 real area of contact increases with time;

- **surface energy:**
 the higher the surface energy, the greater the area of contact.

\[
A_r = \frac{F}{p}
\]

A_r - real contact area, F - applied load; p - hardness.

[Ref: Course of Julian Durand on surface roughness]
Real area of contact depends on

- **normal load**: real area of contact is proportional to the normal load; coefficient of proportionality is inverse of the material hardness;

- **sliding distance**: contact area might be $3(!!)$ times as great as the value before shear forces were first applied;

- **time**: (for creeping materials) real area of contact increases with time;

- **surface energy**: the higher the surface energy, the greater the area of contact.

$$A_r = \frac{F}{p}$$

[Ref: Course of Julian Durand on surface roughness]
Real area of contact

Real area of contact depends on

- **normal load:**
 real area of contact is proportional to the normal load; coefficient of proportionality is inverse of the material hardness;

- **sliding distance:**
 contact area might be $3(!)$ times as great as the value before shear forces were first applied;

- **time:** (for creeping materials)
 real area of contact increases with time;

- **surface energy:**
 the higher the surface energy, the greater the area of contact.

[Ref: Course of Julian Durand on surface roughness]
Real area of contact depends on

- **normal load:**
 real area of contact is proportional to the normal load; coefficient of proportionality is inverse of the material hardness;

- **sliding distance:**
 contact area might be $3(!)$ times as great as the value before shear forces were first applied;

- **time:** (for creeping materials)
 real area of contact increases with time;

- **surface energy:**
 the higher the surface energy, the greater the area of contact.

\[A_r = \frac{F}{p} \]

[Ref: Course of Julian Durand on surface roughness]
Engineering friction

First approximations: friction coefficient does not depend on

- normal load
- apparent area of contact
- velocity
- sliding surface roughness
- time

Friction force direction is opposite to the sliding
Engineering friction

First approximations: friction coefficient does not depend on

- normal load 😊
- apparent area of contact 😊
- velocity 😞
- sliding surface roughness 😞😊
- time 😞😊
- Friction force direction is opposite to the sliding 😊
Real friction :: normal load

First approximation:
- friction coefficient does not depend on normal load.

Exceptions:
- at micro scale for small slidings (fig. 1);
- for very large normal loads (metal forming) friction force is limited;
- for very hard (diamond) or very soft (teflon) materials:
 - generally $T = cF^\alpha$, $\alpha \in \left[\frac{2}{3}; 1 \right]$;
- thin hard coating and a softer substrate (fig.2).
Real friction :: normal load

First approximation:

- friction coefficient does not depend on normal load.

Exceptions:

- at micro scale for small slidings (fig. 1);
- for very large normal loads (metal forming) friction force is limited;
- for very hard (diamond) or very soft (teflon) materials:
 - generally $T = cF^\alpha$, $\alpha \in \left[\frac{2}{3}; 1\right];$
 - thin hard coating and a softer substrate (fig. 2).

Fig. 1. For very small sliding, the force of friction is not proportional to the normal force [Rabinowicz,]
First approximation:
- friction coefficient does not depend on normal load.

Exceptions:
- at micro scale for small slidings (fig. 1);
- for very large normal loads (metal forming) friction force is limited;
- for very hard (diamond) or very soft (teflon) materials:
 - generally $T = cF^\alpha$, $\alpha \in \left[\frac{2}{3}; 1\right]$;
- thin hard coating and a softer substrate (fig.2).

Fig. 1. For very small sliding, the force of friction is not proportional to the normal force [Rabinowicz,]
Real friction :: normal load

First approximation:
- friction coefficient does not depend on normal load.

Exceptions:
- at micro scale for small slidings (fig. 1);
- for very large normal loads (metal forming) friction force is limited;
- for very hard (diamond) or very soft (teflon) materials:
 - generally $T = cF^\alpha$, $\alpha \in [\frac{2}{3}; 1]$;
 - thin hard coating and a softer substrate (fig. 2).

Fig. 1. For very small sliding, the force of friction is not proportional to the normal force [Rabinowicz,]
Real friction :: normal load

First approximation:
- friction coefficient does not depend on normal load.

![Graph showing friction coefficient vs. normal load for steel on steel contact.](image)

Fig. 1. For very small sliding, the force of friction is not proportional to the normal force [Rabinowicz,]

Exceptions:
- at micro scale for small slidings (fig. 1);
- for very large normal loads (metal forming) friction force is limited;
- for very hard (diamond) or very soft (teflon) materials:
 - generally \(T = cF^\alpha, \alpha \in [\frac{2}{3}; 1] \);
 - thin hard coating and a softer substrate (fig. 2).

![Graph showing friction coefficient vs. load for copper on copper contact.](image)

Fig. 2. In case of hard surface layer on a softer substrate, at moderate loads friction is determined by the hard surface, higher load brakes the coating and softer material begins to define the frictional properties [Rabinowicz,]
Real friction :: normal force

Friction coefficient versus tangential movement; experiments from [Courtney-Pratt and Eisner, 1957]
Real friction :: friction direction

First approximation:

- friction force direction is opposite to the sliding.

Exceptions:

- the direction of the friction force remains within $[178; 182]$ degrees to sliding direction (fig. 1);
- the difference is higher for oriented surface roughnesses.
First approximation:
- friction force direction is opposite to the sliding.

Exceptions:
- the direction of the friction force remains within $[178; 182]$ degrees to sliding direction (fig. 1);
- the difference is higher for oriented surface roughnesses.

Fig. 1. Change of the direction of friction force with sliding

[Rabinowicz,]
Real friction :: friction direction

First approximation:
- friction force direction is opposite to the sliding.

Exceptions:
- the direction of the friction force remains within [178; 182] degrees to sliding direction (fig. 1);
- the difference is higher for oriented surface roughnesses.

Fig. 1. Change of the direction of friction force with sliding

[Rabinowicz,]
Real friction :: apparent area and roughness

First approximation:
- Friction coefficient does not depend on the apparent area of contact.

Exceptions:
- very smooth and very clean surfaces.

First approximation:
- Friction coefficient does not depend on sliding surface roughness.

Exceptions:
- very smooth or very rough surfaces (fig. 1).
Real friction :: apparent area and roughness

First approximation:
- Friction coefficient does not depend on the apparent area of contact.

Exceptions:
- very smooth and very clean surfaces.

First approximation:
- Friction coefficient does not depend on sliding surface roughness.

Exceptions:
- very smooth or very rough surfaces (fig. 1).
Real friction :: apparent area and roughness

First approximation:
- Friction coefficient does not depend on the apparent area of contact.

Exceptions:
- very smooth and very clean surfaces.

First approximation:
- Friction coefficient does not depend on sliding surface roughness.

Exceptions:
- very smooth or very rough surfaces (fig. 1).

Fig. 1. Friction roughness influences the coefficient of friction [Rabinowicz,]
First approximation:
- Friction coefficient does not depend on time.

Exceptions:
- creeping materials.

First approximation:
- Friction coefficient does not depend on sliding velocity.

Exceptions:
- if material behaves differently at different loading rate, then the friction depends on the sliding velocity;
First approximation:
- Friction coefficient does not depend on time.

Exceptions:
- Creeping materials.

First approximation:
- Friction coefficient does not depend on sliding velocity.

Exceptions:
- If material behaves differently at different loading rate, then the friction depends on the sliding velocity.

$$f_s = f_0 + kt^{1/10}$$

Static friction evolution with time.
Real friction :: time and velocity

First approximation:

- Friction coefficient does not depend on time.

Exceptions:

- Creeping materials.

First approximation:

- Friction coefficient does not depend on sliding velocity.

Exceptions:

- If material behaves differently at different loading rate, then the friction depends on the sliding velocity.

\[f_s = f_0 + kt^{1/10} \]

\[f_K = f_d + (f_s - f_d)e^{cv} \]
Real friction :: velocity

First approximation:
- Friction coefficient does not depend on sliding velocity.

Exceptions:
- If material behaves differently at different loading rate, then the friction depends on the sliding velocity;
First approximation:

- Friction coefficient does not depend on sliding velocity.

Exceptions:

- If material behaves differently at different loading rate, then the friction depends on the sliding velocity;

Friction coefficient slightly decreases with increasing velocity of sliding, titanium on titanium [Rabinowicz,]
Real friction :: velocity

First approximation:
- Friction coefficient does not depend on sliding velocity.

Exceptions:
- if material behaves differently at different loading rate, then the friction depends on the sliding velocity;

Friction coefficient slightly decreases with increasing velocity of sliding, titanium on titanium [Rabinowicz,]

Friction coefficient dependence on velocity of sliding for lubricated surfaces [Rabinowicz,]
Real friction :: velocity

First approximation:
- Friction coefficient does not depend on sliding velocity.

Exceptions:
- if material behaves differently at different loading rate, then the friction depends on the sliding velocity;

Friction coefficient increases and decreases with increasing velocity of sliding, hard on soft (steel on lead, steel on indium) [Rabinowicz,]

Friction coefficient dependence on velocity of sliding for lubricated surfaces [Rabinowicz,]
Three scales of contact study

Nanoscale:
Study of molecular junctions, van des Waals forces and Casimir effect.

Microscale:
Roughness and microstructure study

Macroscale:
Stress-strain state of contacting solids
Plan

1. Introduction
2. Basic knowledges
3. Contact mechanics of elastic solids
4. Normal contact of inelastic solids
5. Contact of inhomogeneous bodies
Macroscopic contact

- Signorini contact law (1933)

\[
\begin{cases}
F_n \leq 0 \\
u_n \leq 0 \\
F_n u_n = 0
\end{cases}
\]

- Compliance contact law

\[F_n = C_n(u_n)^{m_n}\]

\[F_n = C_1 e^{c_2 u_n^2}\]

[Kragelsky, 1982], [Oden-Martins, 1985]

[Song, Yovanovich, 1987]
Hertz theory (1882)

Geometry of smooth, non-conforming surface in contact

- Expression of the profile of each surface

\[
\begin{align*}
z_1 &= \frac{1}{2R'_1}x_1^2 + \frac{1}{2R''_1}y_1^2 \\
z_2 &= -\left(\frac{1}{2R'_2}x_2^2 + \frac{1}{2R''_2}y_2^2\right)
\end{align*}
\]

where \(R'_i \) and \(R''_i \) are the principal radii of curvature of the surface \(i \).

- Separation between the two surfaces

\[
h = z_1 - z_2 = Ax^2 + By^2
\]

- Displacement

\[
\bar{u}_{z_1} + \bar{u}_{z_2} + h = \delta_1 + \delta_2
\]

[Johnson, 1996]
Hertz theory (1882)

Assumptions in the Hertz theory:

- The surface are continuous and non-conforming, \(a \ll R \)
- The strains are small, \(a \ll R \)
- Each solid can be considered as an elastic half-space, \(a \ll R_{1,2}, a \ll l \)
- The surfaces are frictionless, \(q_x - q_y = 0 \)

Applications

1. Solids of revolution
2. Two-dimensional contact of cylindrical bodies

Note

\[
\frac{1}{E^*} = \frac{1 - \nu_1}{E_1} + \frac{1 - \nu_2}{E_2}
\]
Hertz theory : Solids of revolution

Simple case of solids of revolution

- **Principal radii of curvature**
 \[R'_i = R''_i = R_i, \quad i = 1, 2 \]

- **Boundary conditions for the displacement**
 \[\overline{u_{z1}} + \overline{u_{z2}} = \delta - \left(\frac{1}{2R}\right)r^2 \]

- **Pressure distribution**
 \[p = p_0 \left\{ 1 - \left(\frac{r}{a}\right)^2 \right\}^{1/2} \]

Consequences

- **Pressure**
 \[p_0 = \left(\frac{6PE^*2}{P^3R^2}\right)^{1/3} \]

- **Radius of the contact circle**
 \[a = \left(\frac{3PR}{4E^*2}\right)^{1/3} \]

- **Displacement**
 \[\delta = \left(\frac{9P^2}{16RE^*2}\right)^{1/3} \]
Hertz theory : Solids of revolution

\[\frac{\sigma_r}{p_0}(x = 0, z) = \frac{\sigma_\theta}{p_0}(x = 0, z) = -(1 + \nu) \left\{ 1 - \left(\frac{z}{a}\right) \tan^{-1}\left(\frac{a}{z}\right) \right\} + \frac{1}{2} \left(1 + \frac{z^2}{a^2}\right)^{-1} \]

\[\frac{\sigma_z}{p_0}(x = 0, z) = -(1 + \frac{z^2}{a^2})^{-1} \]

Maximum shear stress \(\tau_1 = \frac{1}{2} |\sigma_r - \sigma_\theta| \)
(\(\tau_1 \))_{max} = 0.31p_0 at the depth of 0.48a (for \(\nu = 0.3 \))
2D contact of cylindrical bodies

\[p(x) = p_0 (1 - (x/a)^2)^{1/2} \]

\[a = \sqrt{\frac{4PR}{\pi E^*}} \]

\[p_0 = \sqrt{\frac{PE^*}{\pi R}} \]

\[\frac{1}{E^*} = \frac{1 - \nu_1}{E_1} + \frac{1 - \nu_2}{E_2} \]

\[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \]
2D contact of cylindrical bodies

Example: cylinder/plate

Distributions of normal pressure (Hertz) and tangential stress

\[
\begin{align*}
\sigma_{xx}(x = 0, z) &= -\frac{p_0}{a} \left\{ (a^2 + 2z^2)(a^2 + z^2)^{-1/2} - 2z \right\} \\
\sigma_{zz}(x = 0, z) &= -p_0 a (a^2 + z^2)^{-1/2} \\
\tau_{\text{max}}(x = 0, z) &= p_0 a \left\{ z - z^2(a^2 - z^2)^{-1/2} \right\} \\
\sigma_{xz} &= \sigma_{xy} = \sigma_{yz} = 0
\end{align*}
\]
Macroscopic friction 1/2

- **Tresca**

\[|F_t| \leq g \]

If \(|F_t| < g \), then \(V_{slide} = 0 \)

If \(|F_t| = g \), \(\exists \lambda > 0 \) such that \(V_{slide} = -\lambda F_t \)

- **Coulomb**

\[|F_t| \leq \mu |F_n| \]

If \(|F_t| < \mu |F_n| \), then \(V_{slide} = 0 \) stick

If \(|F_t| = \mu |F_n| \), \(\exists \lambda > 0 \) such that \(V_{slide} = -\lambda F_t \) slip
Regularized Coulomb [Oden, Pires, 1983], [Raous, 1999]

\[|F_t| = -\mu \phi^i (V_{\text{slide}}) |F_n| \]
\[\phi^1 = \frac{V_{\text{slide}}}{\sqrt{V_{\text{slide}}^2 + \varepsilon^2}} \]
\[\phi^2 = \tanh \left(\frac{V_{\text{slide}}}{\varepsilon} \right) \]

Variable friction

\[|F_t| \leq C_t (u_t)^{m_t} \]
\[\begin{align*}
 \text{If } |F_t| < C_t (u_t)^{m_t}, \text{ then } V_{\text{slide}} = 0 \\
 \text{If } |F_t| = C_t (u_t)^{m_t}, \exists \lambda > 0 \text{ such } V_{\text{slide}} = -\lambda R_t
\end{align*} \]
Introduction

Basic knowledges

Elastic contact

Inelastic contact

Contact of composites

Transition toward the slip

Definition of sliding
Relative peripheral velocity of the surfaces at their point of contact

Sliding of non-conforming elastic bodies

- **Question**
 The tangential traction due to the friction at the contact surface influences the size and shape of the contact area or the distribution of normal pressure?

- **Evaluation of the elastic stresses and displacements**
 Basic premise of the Hertz theory

- **Relationship between the tangential traction and the normal pressure**

\[
\frac{|q(x, y)|}{p(x, y)} = \frac{|Q|}{P} = \mu
\]
Coulomb's law

- **Application**
 Cylinder sliding perpendicular to its axis

[Johnson, 1996, Goryacheva, 1998]
Cylinder sliding perpendicular to its axis

Distributions of normal pressure (Hertz) and tangential traction

\[p(x) = \frac{2P}{\pi a} \sqrt{1 - \left(\frac{x}{a}\right)^2} \]
\[q(x) = \pm \mu p(x) = \pm \mu \frac{2P}{\pi a} \sqrt{1 - \left(\frac{x}{a}\right)^2} \]

(1)

Stress components

\[\sigma_{xx}(x, z = 0) = -p_0 \left\{ \sqrt{1 - \left(\frac{x}{a}\right)^2} + 2 \mu \frac{x}{a} \right\} \]
\[\sigma_{zz}(x, z = 0) = -p_0 \sqrt{1 - \left(\frac{x}{a}\right)^2} \]
\[\sigma_{yy}(x, z = 0) = 0 \]
\[\tau_{xz}(x, z = 0) = -\mu p_0 \sqrt{1 - \left(\frac{x}{a}\right)^2} \]
\[\tau_{xy}(x, z = 0) = \tau_{yz}(x, z = 0) = 0 \]
Partial slip

Relation between slip zone \((c)\) and contact zone \((a)\)

\[
q_1(x) = \mu p_0 \left(1 - \frac{x^2}{a^2}\right)^{1/2}
\]

\[
q_2(x) = \mu \frac{c}{a} p_0 \left(1 - \frac{x^2}{c^2}\right)^{1/2}
\]

\[
q(x) = q_1(x) - q_2(x)
\]

\[
\frac{c}{a} = \sqrt{1 - \frac{Q}{\mu P}}
\]

- If \(x < c\) : stick condition. The local contact shear stress is

\[
\tau_{xz} = \mu p_0 \sqrt{1 - \left(\frac{x}{a}\right)^2} - \frac{c}{a} \mu p_0 \sqrt{1 - \left(\frac{x}{c}\right)^2}
\]

- If \(c < x < a\): slip condition. The local contact shear stress is

\[
\tau_{xz} = \mu p_0 \sqrt{1 - \left(\frac{x}{a}\right)^2}
\]
Definition of the stick-slip: Intermittent relative motion between the contact surfaces, alternation of slip and stick.

Phenomenon occurs at various scales:

- **Macroscopic**: discontinuities in the gravity center displacement of contact body and loads.
- **Microscopic**: location of the phenomenon at the interface
The stick-slip is a coupling result:

- **The dynamic response of the friction system**
 stiffness, damping, inertia

- **Friction dynamic at the interface**
 Difference between static (μ_s) and dynamic (μ_d) friction coefficient
 μ_s and μ_d dependence on the sliding velocity and time

A simple stick-slip model

![Friction law](image)

Fig: Plot of frictional force vs. time.
During sliding, the problem is:

\[m\ddot{x} - F_d = -kx \quad x(0) = \frac{F_s}{k} \quad \dot{x}(0) = v \]

and the solution is

\[x(t) = \frac{1}{k} \left\{ (F_s - F_d)\cos(\omega t) + F_d \right\} + \frac{v}{\omega} \sin(\omega t), \quad \omega = \sqrt{\frac{k}{m}} \]

or the velocity \(v \) is negligible compared to \(\frac{dx}{dt} \):

\[x(t) \approx \frac{1}{k} \left\{ (F_s - F_d)\cos(\omega t) + F_d \right\} \]

Characteristic time of sliding

\[T_{\text{inertia}} = 2\pi \sqrt{\frac{m}{k}} \]

The force \(F \) oscillates between \(F_s \) and \(2F_d - F_s \).
Friction instability: “stick-slip” 4/4

The red curve in the parameters plane at the other parameters being fixed, demarcates the regions of stable and unstable motion.

Fig: Regions of stable and stick-slip motion.
Plan

1. Introduction
2. Basic knowledges
3. Contact mechanics of elastic solids
4. Normal contact of inelastic solids
5. Contact of inhomogeneous bodies
Examples

(a) Vickers indentation test, palladium glasses

(b) Contact zone under Vickers indenter, zirconium glasses

(c) Scratch resistance of soda-Lime Silica Glasses
Hill’s theory: Elastic-plastic indentation

Cavity model of an elastic-plastic indentation cone

Assumptions

- Within the core:

 Hydrostatic component of stress \bar{p}

- Outside the core:

 Radial symmetry for stresses and displacement

- At the interface (between core and plastic zone)

 Hydrostatic stress (in the core) = radial component of stress (in the external zone)

- The radial displacement on $r=a$ during an increment dh must accommodate the volume of material.
Characteristic

In the plastic zone: \(a \leq r \leq c \)
\[
\frac{\sigma_r}{Y} = -2\ln\left(\frac{c}{r}\right) - \frac{2}{3}
\]
\[
\frac{\sigma_\theta}{Y} = -2\ln\left(\frac{c}{r}\right) + \frac{1}{3}
\]

In the elastic zone: \(r \geq c \)
\[
\frac{\sigma_r}{Y} = -\frac{2}{3} \left(\frac{\varepsilon_r}{r} \right)^3
\]
\[
\frac{\sigma_\theta}{Y} = \frac{1}{3} \left(\frac{\varepsilon_r}{r} \right)^3
\]

where \(Y \) denotes the value of the yield stress of material in simple shear and simple compression.

Core pressure
\[
\bar{p} \frac{Y}{Y} = -\left[\frac{\sigma_r}{Y} \right]_{r=a} = \frac{2}{3} + 2\ln\left(\frac{c}{a}\right)
\]

Radial displacement
\[
\frac{du(r)}{dc} = \frac{T}{E} \left\{ 3(1 - \nu)(c^2/r^2) - 2(1 - 2\nu)(r/c) \right\}
\]

Conservation volume
\[
2\pi a^2 du(a) = \pi a^2 dh = \pi a^2 \tan(\beta) da
\]
Unloading indentation: elastic strain energy

Example: spherical indenter

Before loading

Under loading

After unloading

Residual depth $\delta - \delta'$: Estimation of the energy dissipated ΔW in one cycle of the load

$\Delta W = \alpha \int P d\delta$ where α is the hysteresis-loss factor. ($\alpha = 0, 4\%$ for hard bearing steel)

$W = \frac{2}{5} \left(\frac{9E^*^2 P^5}{16R} \right)$

$4a^3 \left(\frac{1}{R} - \frac{1}{\rho} \right) = \frac{3P}{E^*}$

$a = \left(\frac{3P}{4E'} \right)^{1/3}$

$\delta = \frac{a^2}{R} = \left(\frac{9P^2}{16RE'/3} \right)^{1/3}$

$\delta' = \frac{9\pi P_p m}{16E'/2}$ with $P_m = 0.38Y$ in fully plastic state

$\frac{P}{P_Y} = 0, 38(\delta'/\delta_Y)^2$
Introduction

Basic knowledges

Elastic contact

Inelastic contact

Contact of composites

Sharp indentation

Characterisation of $P-h$ response

- During the loading,

\[P = Ch^2 \quad \text{Kick's law} \]

- During the unloading,

\[\left. \frac{dP_u}{dh} \right|_{h_m} \quad \text{initial slope} \]

\[h_r \quad \text{Residual indentation depth after complete unloading} \]

Three independent quantities
Plastic behavior

Model

\[
\sigma = \begin{cases}
E \varepsilon & \text{for } \sigma \leq \sigma_y \\
R \varepsilon^n & \text{for } \sigma > \sigma_y
\end{cases}
\]

- E: Young's modulus
- R: a strength coefficient
- n: the strain hardening exponent
- \(\sigma_y \): the initial yield stress

Assumption:
The theory of plasticity with the von Mises effect stress.

Parameters for an elasto-plastic behavior
E, \(\nu \), \(\sigma_y \), n
Objective
Prediction of the $P - h$ response from elasto-plastic properties

Application of the universal dimensionless functions : the Π theorem

Material parameter set

$$(E, \nu, \sigma_y, n) \quad \text{or} \quad (E, \nu, \sigma_r, n) \quad \text{or} \quad (E, \nu, \sigma_y, \sigma_r)$$

- **Load P**

$$P = P(h, E^*, \sigma_y, n) \quad \text{or} \quad P = P(h, E^*, \sigma_r, n) \quad \text{or} \quad P = P(E, \nu, \sigma_y, \sigma_r)$$

with

$$E^* = \left(\frac{1 - \nu^2}{E} + \frac{1 - \nu_i^2}{E_i} \right)^{-1}$$

- **Unload**

$$P_u = P_u(h, h_m, E, \nu, E_i, \nu_i, \sigma_r, n) \quad \text{or} \quad P_u = P_u(h, h_m, E^*, \sigma_r, n)$$
Determination of h_m

Application of the dimensional analysis during the load

<table>
<thead>
<tr>
<th>Load</th>
<th>Applying the Π theorem in dimensional analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = P(h, E^*, \sigma_y, n)$</td>
<td>$C = \frac{P}{h^2} = \sigma_r \Pi_1 \left(\frac{E^*}{\sigma_r}, n \right)$</td>
</tr>
<tr>
<td>$P = P(h, E^*, \sigma_r, n)$</td>
<td>$C = \frac{P}{h^2} = \sigma_y \Pi_1^A \left(\frac{E^*}{\sigma_y}, \frac{\sigma_r}{\sigma_y} \right)$</td>
</tr>
<tr>
<td>$P = P(E, \nu, \sigma_y, \sigma_r)$</td>
<td>$C = \frac{P}{h^2} = \sigma_r \Pi_1^B \left(\frac{E^*}{\sigma_r}, \frac{\sigma_y}{\sigma_r} \right)$</td>
</tr>
</tbody>
</table>

with Π are dimensionless functions.

And then h_m!
Determination of h_r

Application of the dimensional analysis during the unload

$$
\frac{dP_u}{dh} = \frac{dP_u}{dh} (h, h_m, E^*, \sigma_r, n)
$$

thus

$$
\frac{dP_u}{dh} = E^* h \Pi_2^0 \left(\frac{h_m}{h}, \frac{\sigma_r}{E^*}, n \right)
$$

Consequently,

$$
\left. \frac{dP_u}{dh} \right|_{h=h_m} = E^* h_m \Pi_2^0 \left(1, \frac{\sigma_r}{E^*}, n \right) = E^* h_m \Pi_2 \left(\frac{\sigma_r}{E^*}, n \right)
$$

Or

$$
P_u = P_u (h, h_m, E^*, \sigma_r, n) = E^* \Pi_u \left(\frac{h_m}{h}, \frac{\sigma_r}{E^*}, n \right)
$$

Finally,

$$
P_u = 0 \text{ implies } 0 = \Pi_u \left(\frac{h_m}{h_r}, \frac{\sigma_r}{E^*}, n \right) \text{ whether } \frac{h_r}{h_m} = \Pi_3 \left(\frac{\sigma_r}{E^*}, n \right)
$$

and then h_r !

$\Pi_{i,i = 1,2,3}$ can be used to relate the indentation response to mechanical properties.
FE Vickers indentation test

Maximum penetration h_{s}^{max}
3.11 μm

Parameters

Elastic

E=81600MPa, $\nu = 0, 36$

Elasto-plastic model

E=81600MPa, $\nu = 0, 36$,
$\sigma_y = 1610$MPa

Drucker-Prager model

E=81600MPa, $\nu = 0, 36$,
$\sigma_y = 1600$MPa, $\sigma_y^c = 1800$MPa

[Laniel, 2004]
Computation results

Penetration depth

\[\text{von Mises}_{\text{max}} \]

Residual stress
Elasto-plastic contact response

![Elasto-plastic contact response graph](image)
Elasto-plastic contact response
Hypothesis
Sphere radius: \(R = 100 \mu m \)
Copper and zinc single crystals: crystal plasticity
Silicon substrate: isotropic elastic
Maximum penetration \(h_{s}^{\text{max}} \): 3.5 \(\mu m \)

[Casal and Forest, 2009]
Contact response

(d) Elastic anisotropic contact response
(e) Elasto-plastic anisotropic contact response
von Mises stress fields

Figure: (a) f.c.c and (b) h.c.p crystals. Penetration depth: $h_s = 1.25\mu m$
Plastic zone morphology

(a) f.c.c copper crystals
(b) h.c.p zinc crystals

Figure: Penetration depth: $h_s = 3.5 \mu m$
Plan

1. Introduction
2. Basic knowledges
3. Contact mechanics of elastic solids
4. Normal contact of inelastic solids
5. Contact of inhomogeneous bodies
Bounds for the global coefficient of friction

\[\mu(x) = \frac{q(x)}{p(x)} \quad \bar{\mu} = \frac{\int \mu(x)p(x)dS}{\int p(x)dS} \]

Uniform stress \(\equiv \sum \mu_i f_i \leq \mu \leq \frac{\sum \mu_i c_i f_i}{\sum c_i f_i} \equiv \) Uniform strain

with \(c_i = \frac{E_i}{(1-\nu_i^2)} \frac{(1-\nu_i)^2}{(1-2\nu_i)} \)

[Dick and Cailletaud, 2006]
Bounds for the global coefficient of friction

<table>
<thead>
<tr>
<th>Cont A</th>
<th>ν</th>
<th>E (GPa)</th>
<th>C (GPa)</th>
<th>µ</th>
<th>Cont B</th>
<th>ν</th>
<th>E (GPa)</th>
<th>C (GPa)</th>
<th>µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp 1</td>
<td>0.32</td>
<td>8</td>
<td>11.45</td>
<td>0.1</td>
<td>Comp 1</td>
<td>0.15</td>
<td>55</td>
<td>58.08</td>
<td>0.1</td>
</tr>
<tr>
<td>Comp 2</td>
<td>0.15</td>
<td>55</td>
<td>58.08</td>
<td>0.5</td>
<td>Comp 2</td>
<td>0.32</td>
<td>08</td>
<td>11.45</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Case A: \(\mu_1 = 0.1\), \(E_1 = 11.45\, \text{GPa} \)
\(\mu_2 = 0.5\), \(E_2 = 58\, \text{GPa} \)

Case B: \(\mu_1 = 0.5\), \(E_1 = 58\, \text{GPa} \)
\(\mu_2 = 0.1\), \(E_2 = 11.45\, \text{GPa} \)
FE computations VS analytic estimation

![Graph showing COF vs Component 2 (%) and normalized contact pressure vs x (mm)]
Different CSL geometries 1/2

<table>
<thead>
<tr>
<th></th>
<th>Bulk material</th>
<th>Component 1</th>
<th>Component 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (GPa)</td>
<td>119</td>
<td>8</td>
<td>55</td>
</tr>
<tr>
<td>ν</td>
<td>0.29</td>
<td>0.32</td>
<td>0.15</td>
</tr>
<tr>
<td>R_0 (MPa)</td>
<td>-</td>
<td>200</td>
<td>500</td>
</tr>
</tbody>
</table>
Different CSL geometries 2/2

- Introduction
- Basic knowledges
- Elastic contact
- Inelastic contact
- Contact of composites

Diagram showing COF (Coefficient of Friction) versus Component 2 (%) for different contact pressures (normalized contact pressure vs. x (mm)) for components 1 and 2.
Influence of the number of dimples

<table>
<thead>
<tr>
<th>ESD type</th>
<th>2a (µm)</th>
<th>l_{ESD} (µm)</th>
<th>nb. ESD</th>
<th>l_{ESD} (µm)</th>
<th>nb. ESD</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
<td>360</td>
<td>11.1</td>
<td>32.4</td>
<td>33.3</td>
<td>10.8</td>
</tr>
<tr>
<td>R20</td>
<td>360</td>
<td>22.2</td>
<td>16.2</td>
<td>66.6</td>
<td>5.4</td>
</tr>
<tr>
<td>R40</td>
<td>360</td>
<td>44.4</td>
<td>8.1</td>
<td>133.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Influence of plastic deformations

- Basic knowledges
- Elastic contact
- Inelastic contact
- Contact of composites

- COF

- Component 2 (%)
- Component 1

- R40_el: p Comp.1, p Comp.2
- R40_pl: p Comp.1, p Comp.2

- Normalized contact pressure
- x (mm)

- C Comp.1, C Comp.2

- G. Cailletaud, S. Basseville, V.A. Yastrebov — MINES ParisTech, UVSQ

Contact mechanics I
Paris, 21-24 June 2010
Estimation of the upper and lower bound.

The friction coefficient depend on

- the CSL geometry
- the dissimilarity of the CSL component materials
- the compliance of substrate and counter body
Summary

- Contact and friction
 - complicated phenomena;
 - depend on many material properties;
 - not yet well elaborated.

- Analytical solutions
 - hertzian contact;
 - nonlinear material;
 - friction;
 - stick-slip instabilities.

- Numerical analysis
 - examples of indendation tests;
 - analysis of heterogeneous friction.
Thank you for your attention!

Georges Cailletaud <georges.cailletaud@mines-paristech.fr>
Stéphanie Basseville <stephanie.basseville@mines-paristech.fr>
Vladislav A. Yastrebov <vladislav.yastrebov@mines-paristech.fr>
Finite element crystal plasticity analysis of spherical indentation.
Computational Materials Science, 45:774–782.

Analytic and FE based estimations of the coefficient of friction of composite surfaces.

Contact mechanics in tribology.
London.

Contact mechanics.
Cambridge.

Simulation des procès d’indentation et de rayage par éléments finis et distincts.

Rabinowicz, E.
Friction and Wear.