Non Linear Computational Mechanics - Athens MP06/2013

The Finite Element method for nonlinear structural problems

Vincent Chiaruttini
vincent.chiaruttini@onera.fr

ONERA
THE FRENCH AEROSPACE LAB

www.onera.fr
Outline

- Generalities on computational strategies for nonlinear problems
 - Examples (contact, crack propagation, non-linear behaviour, geometrical non-linearities)
 - Classical algorithm for nonlinear or time dependant problems

- Local numerical aspects of plasticity
 - Elastic-plastic behaviour
 - Local integration of non-linear models

- Global numerical aspects of plasticity
 - Solution process
 - Consistent tangent matrix

- Examples of solution process
- Presentation of Z-mat
Non-linearities in structural problems

- **Contact**
 - Due to the non-penetration condition

- **Crack propagation problem under time dependant loading**
 - When crack propagates the solution becomes non-linearly time dependant

- **Geometrical nonlinearities**
 - For large deformation, instabilities can also occur (buckling)

- **Nonlinear constitutive relationship**
 - Non linear behaviour: elastoplasticity, damage, viscosity
Solution process

- **Iterative algorithm**
 - Scalar example finding $u \mid f(u) = 0$
 - For any kind of regular function, no direct process exists
 - Iterative algorithm building $u_n \rightarrow u \mid f(u) = 0$
 - Stop when a convergence criterion is satisfied $\text{rank } k \mid |f(u_k)| < \varepsilon_{\text{crit}}$

- **Newton method**
 - Built on the linear verification of the first order Taylor development nullity
 $$f(u_{k+1}) \approx f(u_k) + (u_{k+1} - u_k) f'(u_k) = 0$$
 $$\Rightarrow u_{k+1} = u_k - f(u_k) / f'(u_k)$$

For any kind of regular function, no direct process exists. Iterative algorithm building $u_n \rightarrow u \mid f(u) = 0$. Stop when a convergence criterion is satisfied $\text{rank } k \mid |f(u_k)| < \varepsilon_{\text{crit}}$. Newton method built on the linear verification of the first order Taylor development nullity $f(u_{k+1}) \approx f(u_k) + (u_{k+1} - u_k) f'(u_k) = 0$. $\Rightarrow u_{k+1} = u_k - f(u_k) / f'(u_k)$.
Solution process

Newton method
- Built on the linear verification of the first order Taylor development nullity

\[f(u_{k+1}) \approx f(u_k) + (u_{k+1} - u_k) f'(u_k) = 0 \]

\[\Rightarrow u_{k+1} = u_k - \frac{f(u_k)}{f'(u_k)} \]

- Convergence depends on \(u_0 \)

- When converges
 - Rank k error \(e_k = u_k - u \)
 - Recurrence on error relationship \(e_{k+1} - e_k = u_{k+1} - u_k = -\frac{f(u_k)}{f'(u_k)} \)
 - Taylor expansion closely to the exact solution

\[f(u_k) = f'(u)e_k + \frac{1}{2} f''(u)e_k^2 + o(e_k^2) \]

\[f'(u_k) = f'(u) + f''(u)e_k + f'''(u)e_k^2 + o(e_k^2) \]

\[e_{k+1} = e_k - \frac{2f'e_k + f''e_k^2}{2f' + f''e_k + f'''e_k^2} + o(e_k^2) = \frac{f''(u)}{2f'(u)}e_k^2 + o(e_k^2) = O(e_k^2) \]

- Quadratic convergence
 Close enough to the solution each iteration produces twice more significant new digits
Solution process

- **Newton method**
 - Quadratic convergence
 - Require to update the derivative at each iteration

- **Modified Newton methods**
 - Constant direction \(f'(u_k) \approx K = \text{cst} = f'(u_0) \)
 \[
 u_{k+1} = u_k - \frac{f(u_k)}{K}
 \]
 - Linear convergence \(e_{k+1} = (1 - f'(u)/K)e_k + o(|e_k|) = O(|e_k|) \)
Solution process

- **Newton method**
 - Quadratic convergence
 - Require to update the derivative at each iteration

- **Modified Newton methods**
 - Constant direction $f'(u_k) \approx K = \text{cst} = f'(u_0)$ Linear convergence
 - Secant update
 $$ u_{k+1} = u_k + f(u_k) \frac{u_k - u_{k-1}}{f(u_k) - f(u_{k-1})} $$
 $$ e_{k+1} = O(|e_k|^{1+\sqrt{5}/2}) $$
 - Golden ratio convergence order
Solution process

Newton method for a set of equations

- Vectorial function
 \[F(U) = 0 \]

- At each iteration a linear system is solved
 \[0 = F(U_k) + \left(\frac{\partial F^i}{\partial U^j}(U_k) \right) U^j_k \]
 where the operator constitutes the rigidity matrix at \(U_k \)

- Quadratic convergence when close to solution
 - The neighbourhood where such kind of convergence is observed depends on the vectorial function properties

Convergence is insured for convex functions
Examples of convergence using a Newton algorithm

- Solve $f(x) = x^4 + x^2 - 1 = 0$
- Solution $x = \sqrt{\frac{\sqrt{5} - 1}{2}} \approx 0.7861513777574233$
- $f'(x) = 4x^3 + 2x$ \hspace{1cm} x := x - f(x)/f'(x)$
- Starting point, $x = 0.5$

<table>
<thead>
<tr>
<th>iter</th>
<th>x</th>
<th>$f(x)$</th>
<th>f'</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9583333333334E+00</td>
<td>-6.87500000000000E+00</td>
<td>0.15000000000000E+01</td>
<td>0.1721819555759101E+00</td>
</tr>
<tr>
<td>2</td>
<td>0.818212508647757E+00</td>
<td>0.7618664400077163E+00</td>
<td>0.5437210648148149E+01</td>
<td>0.3206113089033369E-01</td>
</tr>
<tr>
<td>3</td>
<td>0.7874707949846017E+00</td>
<td>0.1176640788709701E+00</td>
<td>0.3827505524260790E+01</td>
<td>0.1319417227178432E-02</td>
</tr>
<tr>
<td>4</td>
<td>0.7861537049353379E+00</td>
<td>0.4646978771958370E-02</td>
<td>0.3528216445455353E+01</td>
<td>0.2327177914596135E-05</td>
</tr>
<tr>
<td>5</td>
<td>0.7861513777646758E+00</td>
<td>0.818161391923402E-05</td>
<td>0.3515797756248939E+01</td>
<td>0.7252531908363835E-11</td>
</tr>
<tr>
<td>6</td>
<td>0.7861513777574233E+00</td>
<td>0.2549823861167783E-10</td>
<td>0.3515775842609722E+01</td>
<td>0.0000000000000000E+00</td>
</tr>
</tbody>
</table>
Examples of convergence using a Newton algorithm

- Express \(f(x) = x^4 + x^2 - 1 = 0 \) as
 \[
 \begin{align*}
 f_1(x_1, x_2) &= x_1^2 + x_2^2 - 1 = 0 \\
 f_2(x_1, x_2) &= x_1^2 - x_2 = 0
 \end{align*}
 \]

- Solution \(x_1 = \sqrt{\frac{\sqrt{5} - 1}{2}} \approx 0.7861513777574233 \)

- Jacobian matrix:
 \[
 J = \begin{pmatrix}
 \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\
 \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2}
 \end{pmatrix}
 = \begin{pmatrix}
 2x_1 & 2x_2 \\
 2x_1 & -1
 \end{pmatrix}
 \]

 \[
 J^{-1} = \frac{1}{D} \begin{pmatrix}
 -1 & -2x_2 \\
 -2x_1 & 2x_1
 \end{pmatrix}
 \]

 with \(D = -2x_1 - 4x_1x_2 \)

- Iterative process:

 \[
 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} := \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - J^{-1} \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix}
 \]

 Starting point, \(x_1 = 0.5 \quad x_2 = 1 \)

<table>
<thead>
<tr>
<th>iter</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(f_1(x))</th>
<th>(f_2(x))</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.91666667908430E+00</td>
<td>0.66666665673255E+00</td>
<td>0.25000000000000E+00</td>
<td>-0.75000000000000E+00</td>
<td>0.13051530132687E+00</td>
</tr>
<tr>
<td>2</td>
<td>0.79599567399256E+00</td>
<td>0.61904761857456E+00</td>
<td>0.2847223174240E+00</td>
<td>0.1736114381088E+00</td>
<td>0.98442962351444E-02</td>
</tr>
<tr>
<td>3</td>
<td>0.78621253923518E+00</td>
<td>0.6180344780730E+00</td>
<td>0.1682906707772E-01</td>
<td>0.1456149440315E-01</td>
<td>0.61161477763582E-04</td>
</tr>
<tr>
<td>4</td>
<td>0.78615138013714E+00</td>
<td>0.6180339874998E+00</td>
<td>0.96735527118568E-04</td>
<td>0.9570904336912E-04</td>
<td>0.23797219750321E-08</td>
</tr>
<tr>
<td>5</td>
<td>0.78615137775742E+00</td>
<td>0.61803398874989E+00</td>
<td>0.37417605327095E-08</td>
<td>0.37415486510905E-08</td>
<td>0.00000000000000E+00</td>
</tr>
<tr>
<td>6</td>
<td>0.78615137775742E+00</td>
<td>0.61803398874989E+00</td>
<td>0.5019856058607E-16</td>
<td>-0.71232082732297E-16</td>
<td>0.00000000000000E+00</td>
</tr>
</tbody>
</table>
ODE integration

- Time dependant problem are ruled by differential equations
 - Reduce high order differential systems to first order
 \[
 \frac{d^2 y}{dt^2} + g(t) \frac{dy}{dt} = r(t) \iff \begin{cases}
 \frac{dy}{dt} = z(t) \\
 \frac{dz}{dt} = r(t) - g(t) z(t)
 \end{cases}
 \]
 - General formulation
 \[
 \dot{\mathbf{Y}} = [F(t, \mathbf{Y})] \quad \dot{\mathbf{Y}}(t = t_0) = [\mathbf{Y}_0]
 \]
- Euler-type integration schemes
 - Finite difference time discretization
 \[
 \dot{\mathbf{Y}}(t_n) = Y_n, \quad t_{n+1} = t_n + \Delta t, \quad \dot{\mathbf{Y}}(t) = F(t, \mathbf{Y})
 \]
 forwrd methods \[
 \dot{\mathbf{Y}}(t_{n+1}) \approx \frac{\mathbf{Y}_{n+1} - \mathbf{Y}_n}{\Delta t}
 \]
 - \(\theta\)-method (method-B)
 \[
 \frac{\mathbf{Y}_{n+1} - \mathbf{Y}_n}{\Delta t} = \theta F_{n+1}(\mathbf{Y}_{n+1}) + (1 - \theta) F_n(\mathbf{Y}_n)
 \]
 - Explicit Forward Euler (\(\theta=0\))
 Conditionally stable
 1st order accurate
 - Crank-Nicholson (\(\theta=0.5\))
 Unconditionally stable
 2nd order accurate
 - Implicit Euler (\(\theta=1\))
 Unconditionally stable
 1st order accurate
ODE integration

- **Time dependant problem are ruled by differential equations**
 - Runge-Kutta explicit integration
 - Minimal multiple evaluations of \(F(t, y(t)) \) on a given time increment to insure a specific order accuracy, based on Taylor expansion
 \[
 y_{n+1} = y_n + \Delta t y'_n + (\Delta t/2) y''_n + o(\Delta t^2)
 \]
 - RK1 is the forward explicit Euler scheme
 - RK2 using one mid-point sub calculation at \(t_{n+\frac{1}{2}} \)
 \[
 y_{n+1/2} = y_n + \frac{\Delta t}{2} f(t_n, y_n)
 \]
 \[
 y_{n+1} = y_n + \Delta t f(t_{n+1/2}, y_{n+1/2})
 \]
 - 2\(^{nd}\) order method
 - RK4 popular method using 4 sub calculations
 \[
 y_{n+1} = y_n + \Delta t/6 (k_1 + 2k_2 + 2k_3 + k_4)
 \]
 \[
 k_1 = f(t_n, y_n) \quad \text{Initial slope on the interval}
 \]
 \[
 k_2 = f(t_{n+1/2}, y_n + (\Delta t/2) k_1) \quad \text{Mid interval slope using } k_1
 \]
 \[
 k_3 = f(t_{n+1/2}, y_n + (\Delta t/2) k_2) \quad \text{Mid interval slope using } k_2
 \]
 \[
 k_4 = f(t_{n+1/2}, y_n + \Delta t k_3) \quad \text{Final slope using } k_3 \text{ on the interval}
 \]
 - 4\(^{th}\) order method
Outline

- **Generalities on computational strategies for nonlinear problems**
 - Examples (contact, crack propagation, non-linear behaviour, geometrical non-linearities)
 - Classical algorithm for nonlinear or time dependant problems

- **Local numerical aspects of plasticity**
 - Elastic-plastic behaviour
 - Local integration of non-linear models

- **Global numerical aspects of plasticity**
 - Solution process
 - Consistent tangent matrix

- **Examples of solution process**

- **Presentation of Z-mat**
Local numerical aspects of plasticity

Assumptions
- Small strain: linearised kinematic
- Quasi-static loadings: no dynamic effects

Small strain elastoplastic problem
- Elastic domain
 \[f(\sigma) < 0 \]
 - A usual elastic behaviour is applied
- Yield surface
 \[f(\sigma) = 0 \]
 - Irreversible/dissipative phenomena can occur
- Example Von Mises criterion
 \[f(\sigma) = \sqrt{3/2} \sigma_D : \sigma_D - R \quad \text{with} \quad \sigma_D = \sigma - \frac{1}{3} \text{Tr}(\sigma) I \]
Local numerical aspects of plasticity

- Small strain elastoplastic problem
 - Plastic strain
 - Strain partition
 \[\varepsilon = \varepsilon^e + \varepsilon^{in} = \varepsilon^e + \varepsilon^p \]
 - Rigidity
 \[\sigma = A : \varepsilon^e = A : (\varepsilon - \varepsilon^p) \]

- Yield surface evolution (convex), hardening
 - When \(f = 0 \) the yield surface evolves
 - Isotropic hardening \(\rightarrow \) yield surface increase
 - Kinematic hardening \(\rightarrow \) yield surface translation

- Flow rules
 - Plasticity (normality rule)
 \[\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial f}{\partial \sigma}, \quad \dot{\lambda} \geq 0, \quad f(\sigma) \leq 0, \quad \dot{\lambda} f(\sigma) = 0 \]
 - Cumulated plastic strain rate
 \[p(t) = \int_0^t \sqrt{\frac{3}{2} (\dot{\varepsilon}^p(\tau) : \dot{\varepsilon}^p(\tau))} d\tau \quad (= \dot{\lambda} \text{ for a Von Mises criterion}) \]
Local numerical aspects of plasticity

- **Common formalism for viscoplasticity/multipotentials/large strain**
 - **Strain partition**
 - **Small strain**
 \[\varepsilon = \varepsilon^e + \varepsilon^{in} = \varepsilon^e + \varepsilon^p + \varepsilon^{vp} \]
 - **Large strain**
 \[\mathbf{F} = \mathbf{E} \mathbf{P} \]
 - **Elasticity**
 \[\sigma = \mathbf{A} : \varepsilon^e \]
 - **Flow rules**
 - **Plasticity (state must stay on the yield surface at the end of the increment)**
 \[\dot{\varepsilon}^p = \sum_s \dot{\lambda}^s \mathbf{n}^s \quad \dot{\lambda}^s \text{ from } \dot{f}^s = 0 \]
 - **Viscoplasticity (state expected to be on the relevant equipotential at the end of the increment)**
 \[\dot{\varepsilon}^{vp} = \sum_s \dot{\mathbf{v}}^s \mathbf{m}^s \quad \dot{\mathbf{v}}^s = \left(\frac{f^s}{K} \right)^n \]
 - **Hardening rules**
 \[\dot{Y}_I = fct(Y_I, \varepsilon^p, \varepsilon^{vp}) \]
Elastoplastic example

Relations \(t \in [0, T] \)

Equilibrium and strain definition

\[
\nabla \sigma + f = 0 \\
\varepsilon = \frac{1}{2} (\nabla u + \nabla^T u)
\]

Behaviour

\[
\sigma = A : (\varepsilon - \varepsilon^p) \\
\sigma^{eq} = \sqrt{\frac{3}{2}} ||\sigma_D|| \\
\dot{\varepsilon}^p = \dot{p} \frac{3}{2\sigma^{eq}} \sigma_D \\
\dot{p} \geq 0 \\
\sigma^{eq} - R(p) \leq 0 \\
\dot{p} (\sigma^{eq} - R(p)) = 0
\]

Boundary conditions (initial equilibrium and no plasticity)

\[
\begin{align*}
\mathbf{u} &= \mathbf{u}_d \text{ on } \partial_u \Omega \\
\mathbf{\sigma} \cdot \mathbf{n} &= \mathbf{F} \text{ on } \partial_f \Omega \\
\varepsilon^p(t = 0) &= 0
\end{align*}
\]
Numerical solution process

- **Elastoplastic example**
 - Mechanical state: \(S(x, t) = \{ u(x, t), \varepsilon(x, t), \varepsilon^p(x, t), \sigma(x, t) \} \)
 - Temporal discretization
 - Incremental temporal approach using a regular grid: \(t_{n+1} = t_n + \Delta t \)
 The solution is searched incrementally at each time step \(t_{n+1} \) (all previous step states being known)
 - Spatial discretization
 - FE method in displacement
 \[
 \forall u^* \in U_{ad}^0, \quad \int_\Omega \sigma_{n+1} : \varepsilon^* d\Omega = \int_\Omega f_{n+1} \cdot u^* d\Omega + \int_{\partial F \Omega} F_{n+1} \cdot u^* dS
 \]
 - Nonlinearity comes from the non-linear relation between stress and strain relation
 - Local integration of the mechanical behaviour
 - At each point of the structure process is defined by the following process
 \[
 (u_{n+1}, S_n) \rightarrow \sigma_{n+1} = F(u_{n+1}, S_n)
 \]
 - Global equilibrium
 - Verified by the solution of the nonlinear variational formulation
 \[
 R(u_{n+1}; u^*, S_n) = 0, \quad \forall u^* \in U_{ad}^0
 \]
Local behaviour integration process

- **Generic interface for any constitutive equation**
 - Gauss point process (where the element variational formulation is integrated)
 - Definition
 - *External parameters* \((\epsilon_p) \) imposed as input
 - *Integrated variables* \((v_{int}) \)
 - *Auxiliary variables* \((v_{aux}) \) just for output
 - *Coefficients* \((coef) \) material parameters
 - *Primal and dual variables* prescribed variables and associated fluxes
 - Primal: strain increment on the current time interval (input to the local integration process)
 - Dual: stress obtained useful for variational formulation (as output of the local integration process)

\[
\mathcal{F}(u_{n+1}, S_n)
\]
Local behaviour integration process

- **Time integration**
 - Normality rule as an ODE
 \[\dot{\varepsilon}^p = \dot{\sigma} \left(\frac{3}{2\sigma} \right) \varepsilon_{eq} \Rightarrow \varepsilon_{n+1}^p = \varepsilon_n^p + \int_{t_n}^{t_{n+1}} \dot{\varepsilon}^p(\tau) \, d\tau \]
 - Explicit integration → Runge-Kutta (RK4 usually, beware of stability condition)
 - Implicit integration → θ-methods (stable but requires a local Jacobian computation)

\[\text{Interval} \quad [1 : 4] \]

\[f(x) = 1 + \sqrt{x} \quad f'(x) = 0.5 / \sqrt{x} \]
\[f_0 = 2 \quad f_0' = 0.5 \]
\[f_1 = 3 \quad f_1' = 0.25 \]
\[f_{1/2} = 1 + \sqrt{2.5} \quad f_{1/2}' = 0.5 / \sqrt{2.5} \]

- \(\theta = 0: f_1 \approx 2 + 3 \times 0.5 = 3.5 \)
- \(\theta = 1: f_1 \approx 2 + 3 \times 0.25 = 2.75 \)
- \(\theta = 1/2: f_1 \approx 2 + 3 \times 0.5 \times 0.375 = 3.125 \)
Local behaviour integration process

- **Elastic prediction and correction algorithm**

 - Solution depends on the test $\sigma^{eq} - R(p) \leq 0$ (is the evolution purely elastic on Δt?)

 - Elastic prediction

 $$\sigma^{e}_{n+1} = \sigma_{n} + A : \Delta \varepsilon^{e}_{n}$$

 - Convexity of the yield surface gives

 $$f(\sigma^{e}_{n+1}, p_{n}) \geq f(\sigma^{e}_{n+1}, p_{n} + \Delta p_{n})$$

 - $f(\sigma^{e}_{n+1}, p_{n}) \leq 0$ purely elastic evolution, prediction is correct

 $$\begin{cases}
 \sigma^{e}_{n+1} = \sigma^{e}_{n+1} \\
 \varepsilon^{p}_{n+1} = \varepsilon^{p}_{n} \\
 p_{n+1} = p_{n}
 \end{cases}$$

 - Else a plastic evolution is observed

 - A correction must be applied on the elastic prediction

 $$\Delta p_{n} > 0, \quad \Delta p_{n} \cdot f(\sigma^{e}_{n+1}, p_{n} + \Delta p_{n}) = 0 \Rightarrow f(\sigma^{e}_{n+1}, p_{n} + \Delta p_{n}) = 0$$

 $$\sigma^{e}_{n+1} = \sigma^{e}_{n+1} - A : \Delta \varepsilon^{p}_{n} \quad \Delta \varepsilon^{p}_{n} = \Delta p_{n} \sqrt{\frac{3}{2} N_{n+1}} \quad \Delta p_{n} > 0$$

 where N_{n+1} is the outward unit normal to the final yield surface
Local behaviour integration process

- Elastic prediction and correction algorithm
 - Solution depends on the test \(\sigma^{eq} - R(p) \leq 0 \) (is the evolution purely elastic on \(\Delta t \) ?)
 - Elastic prediction
 \[
 \sigma_{n+1}^e = \sigma_n + A : \Delta \varepsilon_{n}^e
 \]
 - Convexity of the yield surface gives
 \[
 f(\sigma_{n+1}^e, p_n) \geq f(\sigma_{n+1}^e, p_n + \Delta p_n)
 \]
 - \(f(\sigma_{n+1}^e, p_n) \leq 0 \) purely elastic evolution, prediction is correct
 - Else a plastic evolution is observed
 - A correction must be applied on the elastic prediction

\[
\Delta p_n > 0, \quad \Delta p_n f(\sigma_{n+1}^e, p_n + \Delta p_n) = 0 \Rightarrow f(\sigma_{n+1}^e, p_n + \Delta p_n) = 0
\]
\[
\sigma_{n+1} = \sigma_{n+1}^e - A : \Delta \varepsilon_{n}^p \quad \Delta \varepsilon_{n}^p = \Delta p_n \sqrt{\frac{3}{2} \frac{N}{n+1}} \quad \Delta p_n > 0
\]

where \(\frac{N}{n+1} \) is the outward unit normal to the final yield surface
Radial return algorithm

- For von Mises based criteria or isotropic or linear kinematic hardening
 - The corrective term \(A : \Delta \varepsilon_p \) is oriented by the final normal that can be computed \textit{a priori}

- For von Mises criterion the final normal is collinear to the elastic predictor deviator

\[
\frac{N_{n+1}}{\sigma_{Dn+1}} = \frac{\sigma_{e}^{e}D_{n+1}}{||\sigma_{e}^{e}D_{n+1}||} \quad \sigma_{n+1} = \sigma_{n+1}^e - A : \Delta p_n \sqrt{\frac{3}{2N_{n+1}}}
\]

\[
\sigma_{n+1}^{eq} = \sigma_{n+1}^{e,eq} - 3\mu \Delta p_n \quad \mu \text{ Lamé coefficient}
\]

- Final state on the yield surface gives to verify

\[
\sigma_{n+1}^{e,eq} - 3\mu \Delta p_n - R(p_n + \Delta p_n) = 0
\]

that allows to find \(\Delta p_n \)
Generalized radial return algorithm

- Closest point projection technique

 - For a generalized normality rule

 \[\Delta \varepsilon^p = \frac{\partial f}{\partial \sigma} \Delta p \quad \Delta \alpha_I = \frac{\partial f}{\partial Y_I} \Delta p \]

 - Fluxes

 \[\Delta \sigma = A : (\Delta \varepsilon - \Delta \varepsilon^p) \]
 \[\Delta Y_I = M_I \Delta \alpha_I \]

 \[\Delta \Sigma = \left[\frac{\Delta \sigma}{\Delta Y_I} \right] = \left[A : \frac{\Delta \varepsilon}{\Delta \alpha_I} \right] - \left[\frac{A}{0} \right] \frac{\partial f}{\partial \sigma} + \left[\begin{array}{c} 0 \\ M_I \end{array} \right] \frac{\partial f}{\partial Y_I} \right] \Delta p \]
Generic formulation of the local integration process

Find state variables increment, $\Delta \xi^e$ and $\Delta \alpha_I$, using strain partition rule and hardening rules.

$$
\mathcal{F}_e = \Delta \xi^e + \Delta \rho \eta_\theta + \Delta \xi^{th} - \Delta \xi
$$

$$
\mathcal{F}_{pi} = r_{pi}(\xi^e, \alpha_I)
$$

Jacobian matrix $[J] =$

$$
\begin{pmatrix}
\frac{\partial \mathcal{F}_e}{\partial \Delta \xi^e} & \frac{\partial \mathcal{F}_e}{\partial \Delta \alpha_I} \\
\frac{\partial \mathcal{F}_{pi}}{\partial \Delta \xi^e} & \frac{\partial \mathcal{F}_{pi}}{\partial \Delta \alpha_I}
\end{pmatrix}
$$

Note:

$$
\mathcal{N} = \frac{\partial \eta}{\partial \Delta \eta} = \frac{\partial}{\partial \Delta \eta} \left(\frac{3}{2} \mathcal{S} \right) = \frac{1}{J} \left(\frac{3}{2} \mathcal{J} - \eta \otimes \eta \right)
$$

(with $\mathcal{S} = \mathcal{J} : \sigma$) accounts for normal rotation during the increment.
Outline

- Generalities on computational strategies for nonlinear problems
 - Examples (contact, crack propagation, non-linear behaviour, geometrical non-linearities)
 - Classical algorithm for nonlinear or time dependant problems

- Local numerical aspects of plasticity
 - Elastic-plastic behaviour
 - Local integration of non-linear models

- Global numerical aspects of plasticity
 - Solution process
 - Consistent tangent matrix

- Examples of solution process

- Presentation of Z-mat
Global aspects

- **Solving the global discrete problem**
 - **Global problem**
 \(\mathcal{R}(u_{n+1}; u^*, S_n) = 0, \forall u^* \in \mathcal{U}^0_{ad} \) with \(\mathcal{R}(u_{n+1}; u^*, S_n) = \)
 \[
 \int_{\Omega} \mathcal{F}(u_{n+1}, S_n) : \varepsilon^* d\Omega - \int_{\Omega} f_{n+1} u^* d\Omega - \int_{\partial F \Omega} F_{n+1} u^* dS
 \]
 - **Global Newton algorithm**
 - At each time step the solution is searched iteratively starting from the last converged solution leading to the following linear system at iteration \(i \)
 \[
 \mathcal{R}(u^i_{n+1}; u^*, S_n) + \mathcal{R}'(u^i_{n+1}; u^*, S_n)[u_{n+1}^{i+1} - u_{n+1}^i] = 0, \forall u^* \in \mathcal{U}^0_{ad}
 \]
 - To obtain the residual evaluation, it is necessary to perform the local integration to get
 \[
 \mathcal{F}(u^i_{n+1}, S_n)
 \]
 - To calculate the global consistent tangent operator, it is necessary to obtain a local consistent tangent operator (that can be kept constant if a modified Newton algorithm with constant operator is involved)
 \[
 \mathcal{R}'(u^i_{n+1}; u^*, S_n) = \int_{\Omega} \frac{\partial \mathcal{F}}{\partial u}(u_{n+1}, S_n) : \varepsilon^* d\Omega
 \]
 - When the residual is small enough the solution is reached
 \[
 \| \mathcal{R}(u^i_{n+1}; u^*, S_n) \| < \eta_{NL}
 \]
Local consistent tangent operator

In the local integration process

After convergence,
\[
\begin{pmatrix}
 d\Delta \varepsilon \\
 0
\end{pmatrix}
= [J]
\begin{pmatrix}
 d\Delta \varepsilon^e \\
 d\Delta \alpha_i
\end{pmatrix}
\]

... then
\[
\begin{pmatrix}
 d\Delta \varepsilon^e \\
 d\Delta \alpha_i
\end{pmatrix}
= [J]^{-1}
\begin{pmatrix}
 d\Delta \varepsilon \\
 0
\end{pmatrix}
\]

\[
[J]^{-1} = \begin{pmatrix}
 \frac{\partial \varepsilon^e}{\partial \varepsilon} & x \\
 x & x
\end{pmatrix}
\]

with \[
[H] = \frac{\partial \varepsilon^e}{\partial \varepsilon}\]

Consistent tangent matrix:

\[
\mathbf{L}_c = \frac{\partial \varepsilon}{\partial \varepsilon^e} : \frac{\partial \Delta \varepsilon^e}{\partial \varepsilon} = \Lambda : [H]
\]
Outline

- Generalities on computational strategies for nonlinear problems
 - Examples (contact, crack propagation, non-linear behaviour, geometrical non-linearities)
 - Classical algorithm for nonlinear or time dependant problems
- Local numerical aspects of plasticity
 - Elastic-plastic behaviour
 - Local integration of non-linear models
- Global numerical aspects of plasticity
 - Solution process
 - Consistent tangent matrix
- Examples of solution process
- Presentation of Z-mat
Viscoelastic with isotropic hardening

\[f(\sigma, R) = J(\sigma) - R - \sigma_y \]

\[J(\sigma) = \sqrt{(3/2)s : s}; \quad s = \sigma - (1/3) \text{trace} \sigma; \quad \sigma_y = \text{init yield} \]

\[\dot{\varepsilon}^p = \dot{\rho}n; \quad \dot{\rho} = \sqrt{(2/3)\dot{\varepsilon}^p : \dot{\varepsilon}^p}; \quad R = (1 - \exp(-bp)) \]

Time independent (TI) behavior: \(f = 0 \)

Time dependent (TD) behavior: \(\dot{\rho} = \left(\frac{f}{K} \right)^n \)

<table>
<thead>
<tr>
<th></th>
<th>3D</th>
<th>1D tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI</td>
<td>(J(\sigma) - R - \sigma_y = 0)</td>
<td>(\sigma = R + \sigma_y)</td>
</tr>
<tr>
<td>TD</td>
<td>(J(\sigma) - R - \sigma_y = K\dot{\rho}^{1/n})</td>
<td>(\sigma = R + \sigma_y + K(\dot{\varepsilon}^p)^{1/n})</td>
</tr>
</tbody>
</table>
Viscoelastic with isotropic hardening

Implementation

Unkowns = $\Delta \varepsilon^e$, Δp

Time–independent plasticity:

$$
\mathcal{F}_e = \Delta \varepsilon^e + \Delta p n_\theta + \Delta \varepsilon^{th} - \Delta \varepsilon
$$

$$
\mathcal{F}_p = f(\vec{\sigma}_{t+\Delta t}) = 0
$$

Δp is the increment of equiv (visco-)plastic strain

n_θ is the normal to the yield surface at $t + \theta \Delta t$

Time–dependent plasticity, replace previous r_p by:

$$
\mathcal{F}_p = \Delta p - \Delta t \left(\frac{f}{K} \right)^n = 0 \quad \text{or} \quad \mathcal{F}_p = f - K \left(\frac{\Delta p}{\Delta t} \right)^{1/n} = 0
$$
Viscoelastic with isotropic hardening

Implementation

Time-independent plasticity:

\[
[J] = \begin{pmatrix}
\mathbf{1} + \theta \mathbf{N}_\theta : \mathbf{\Lambda}_\theta \Delta p \\
\mathbf{\Lambda}_1 : \mathbf{n}_1 \\
-\mathbf{n}_\theta \\
-\mathbf{H} = -dR/dp
\end{pmatrix}
\]

Incremental consistent operator \(\mathbf{L}_c \) versus tangent continuous operator \(\mathbf{L}_t \)

\[
\mathbf{L}_c = \mathbf{L}_t - 4\mu^2 \Delta p \mathbf{N}
\]
Viscoelastic with isotropic hardening

Implementation

Time-dependent plasticity, now

\[F_p = \Delta p - \Delta t \left\langle \frac{f}{K} \right\rangle^n = 0 \]

\[\frac{\partial F_p}{\partial \Delta p} = 1 \; ; \; \frac{\partial F_p}{\partial \Delta \varepsilon^e} = \frac{\partial F_p}{\partial \Delta \sigma} \frac{\partial \Delta \sigma}{\partial \Delta \varepsilon^e} = \frac{n}{K} \left(\frac{f}{K} \right)^{n-1} \]
Large strain viscoelastic with isotropic hardening

- Elasticity: \(T = \Lambda : E^e \quad E^e = \log \mathbf{U}^e \)
- Flow: \(L^p = D^p \) with \(D^p = \mathbf{p} \mathbf{n} = \mathbf{p} \frac{\partial f}{\partial \mathbf{T}} \)
- Integration: \(\dot{F}^p = D^p F^p \quad F^p_{n+1} = \exp \left(D^p_{n+1} \Delta t \right) F^p_n \)

- After a few manipulations...

\[
F^e_{n+1} = F^e_{n+1} F^p_{n+1}^{-1} = F^e_{n+1} F^p_{n}^{-1} \exp \left(D^p_{n+1} \Delta t \right) = F^* \exp \left(D^p_{n+1} \Delta t \right)
\]

\[
F^* = F^e_{n+1} F^p_{n}^{-1} = R^* U^*
\]

\[
F^* = F^e_{n+1} \exp \left(D^p_{n+1} \Delta t \right) = R^e_{n+1} U^e_{n+1} \exp \left(D^p_{n+1} \Delta t \right)
\]

\[
R^* = R^e_{n+1} \quad U^* = U^e_{n+1} \exp \left(D^p_{n+1} \Delta t \right)
\]

- Final additive form for the incremental strain partition

\[
E^* = E^e_{n+1} + D^p_{n+1} \Delta t = E^e_{n+1} + \mathbf{n}_{n+1} \Delta \mathbf{p}
\]
System of residuals

- For plasticity, \(f(\mathbf{T}, R) = J((\mathbf{T})) - R = 0 \)
- Viscoplasticity, \(f(\mathbf{T}_{n+1}, R_{n+1}) - K \left(\frac{\Delta p}{\Delta t} \right)^{1/n} = 0 \)
- The unknowns are \(\mathbf{E}_{n+1}^e \) et \(\Delta p \), and the system is formed by 2 and either 3 or 4

\[
\begin{align*}
\mathcal{F}_e &= -\mathbf{E}^* + \mathbf{E}_{n+1}^e + n_{n+1} \Delta p \\
\mathcal{F}_p &= J(\Lambda : \mathbf{E}_{n+1}^e) - R(p + \Delta p) \\
\mathcal{F}_p &= J(\Lambda : \mathbf{E}_{n+1}^e) - R(p + \Delta p) - K \left(\frac{\Delta p}{\Delta t} \right)^{1/n} \\
\text{with } n_{n+1} &= \frac{3}{2} \frac{T'_{n+1}}{J(T_{n+1})} \\
T_{n+1} &= \Lambda : \mathbf{E}_{n+1}^e
\end{align*}
\]
Algorithm

- PreStep at the beginning of the step

$$\tilde{F}^* = \tilde{F}_{n+1} \tilde{F}^{-1}_n$$ $$\tilde{F}^* = R^* U^*$$ $$E^* = \log(U^*)$$

- StrainPart to compute Cauchy stress and F^p, which is saved as an auxiliary variable to compute F^e at the beginning of the next step

$$T_{n+1} = \tilde{\Lambda} : E^e_{n+1}$$ $$\sigma_{n+1} = R^* T_{n+1} R^* T$$

$$U^e_{n+1} = \exp(E^e_{n+1})$$ $$F^e_{n+1} = R^* U^e_{n+1}$$ $$F^p_{n+1} = (F^e_{n+1})^{-1} F_{n+1}$$

- CalcGradF to express the residuals and their derivatives

$$\begin{pmatrix}
\frac{\partial F_e}{\partial E^e_{n+1}} & \frac{\partial F_e}{\partial \Delta p} \\
\frac{\partial F_p}{\partial E^e_{n+1}} & \frac{\partial F_p}{\partial \Delta p}
\end{pmatrix} = \begin{pmatrix}
I + \Delta p \frac{\partial n_{n+1}}{\partial T_{n+1}} : \tilde{\Lambda} \\
\tilde{n}_{n+1} : \tilde{\Lambda} - \frac{\partial R}{\partial \Delta p} - \frac{K}{n \Delta t} \left\langle \frac{\Delta p}{\Delta t} \right\rangle^{(1/n)-1}
\end{pmatrix}$$
Tangent matrix

\[
\begin{pmatrix}
\frac{\partial F_e}{\partial E_{e,n+1}} & \frac{\partial F_e}{\partial \Delta p} \\
\frac{\partial F_p}{\partial E_{e,n+1}} & \frac{\partial F_p}{\partial \Delta p}
\end{pmatrix}
\begin{pmatrix}
E_{e,n+1}^e \\
\Delta p
\end{pmatrix}
= [H]
\begin{pmatrix}
E_{e,n+1}^e \\
\Delta p
\end{pmatrix}
= \begin{pmatrix}
E^* \\
0
\end{pmatrix}
\]

- The top left block of \([H]^{-1}\) is \(\frac{\partial E_{e,n+1}^e}{\partial E^*}\), so that, at convergence

\[
\frac{\partial \sigma_{n+1}}{\partial E^*} = \frac{\partial \sigma_{n+1}}{\partial T_{\tilde{\alpha},n+1}^\pi} \cdot \frac{\partial T_{n+1}}{\partial E^*}
\]

avec \(\frac{\partial T_{n+1}}{\partial E^*} = \Lambda : \frac{\partial E_{e,n+1}^e}{\partial E^*}\)

- Since \(\tilde{\alpha}^*\) does not depend on \(\tilde{T}\)

\[
\frac{\partial \sigma_{n+1}}{\partial T_{\tilde{\alpha},n+1}^\pi} = -\frac{1}{J^2} \frac{\partial J}{\partial T_{\tilde{\alpha},n+1}^\pi} R^* T_{\tilde{\alpha},n+1}^\pi R^* T + \frac{1}{J} R^* I R^* T
\]

- and:

\[
\frac{\partial \sigma_{n+1}}{\partial E^*} = \frac{1}{J} \left(R^* I R^* T \right) : \left(\Lambda : \frac{\partial E_{e,n+1}^e}{\partial E^*} \right)
\]
Outline

- Generalities on computational strategies for nonlinear problems
 - Examples (contact, crack propagation, non-linear behaviour, geometrical non-linearities)
 - Classical algorithm for nonlinear or time dependant problems
- Local numerical aspects of plasticity
 - Elastic-plastic behaviour
 - Local integration of non-linear models
- Global numerical aspects of plasticity
 - Solution process
 - Consistent tangent matrix
- Examples of solution process
- Presentation of Z-mat
Presentation of the Z-mat library

- Numerous material models, plus user material
- Interface with the classical FE softwares
- Provide automatic time stepping and consistent tangent stiffness
- Coefficients presenting unlimited dependence on internal variables
- ZeBFRoNT, automatic code generation
- MuLTiMaT concept, for recursive multiscale modeling
Inside Z-mat

- Constitutive Model
 - Integration Methods
 - Runge-Kutta
 - Theta method
 - Constitutive Models
 - Basic Objects
 - Elasticity
 - Thermal Strain
 - Isotropic Hardening
 - Kinematic Hardening
 - Predefined Constitutive Models
 - ...
Object oriented design

Material objects
- Flow
- Behavior
- Isotropic hardening
- Criterion
- Kinematic hardening
- Elasticity
- Damage
- Potential
- Thermal strain
- etc...

Typical assembly for viscoplasticity
- Behavior
- Elasticity
- Thermal strain
- Potential
- Criterion
- Flow
- Isotropic hardening
- Kinematic hardening

Isotropie and non-linear kinematic model

\[\varepsilon^h = \alpha(T - T_{ref}) \]

\[f = J \left(\sigma' - \sum_i X_i \right) - R \]

\[\dot{p} = \left(\frac{f}{k} \right)^n, \quad \varepsilon^{ev} = \dot{p}n \]

\[R = R_0 + Q(1 - e^{-bp}) \]

\[\dot{X} = \frac{2}{3} C \alpha, \quad \ddot{\alpha} = \dot{p} \left[n - \frac{3D}{2C} \dot{X} \right] \]
Datafile examples

Plasticity
- ***behavior gen_evp
- **elasticity isotropic
 - young 100000.
 - poisson 0.3
- **potential gen_evp ep
- *criterion mises
- *flow plasticity
- *isotropic nonlinear
 - R0 210. Q 50. b 10.
- *kinematic nonlinear
 - C 20000. D 500.

Viscoplasticity
- ***behavior gen_evp
- **elasticity isotropic
 - young 100000.
 - poisson 0.3
- **potential gen_evp ev
 - *criterion mises
 - *flow norton
 - K 1000. n 4.5
 - *isotropic nonlinear
 - R0 210. Q 50. b 10.
 - *kinematic nonlinear
 - C 20000. D 500.

Crystal viscoplasticity
- ***behavior gen_evp
- **elasticity cubic
 - y1111 100000.
 - y1122 75000.
 - y1212 112000.
- **potential octahedral
 - *flow norton
 - K 1000. n 4.5
 - *isotropic nonlinear
 - R0 210. Q 50. b 10.
 - *kinematic nonlinear
 - C 20000. D 500.
 - *interaction slip
 - h1 1. h2 1.2 h3 1.4 h5 1.3 h6 1.8
ZebFront interface layer for efficient behaviour development

- Preprocessor, using building bricks like elasticity, flow, etc...
- Use a macrolanguage, with a limited number of keywords like Coefs, StrainPart, derivative, implicit, etc...
- Generate C++ code
Explicit model implementation - ZebFront

```plaintext
@Class NORTON_BEHAVIOR : BASIC_NL_BEHAVIOR
{
    @Name norton;
    @SubClass ELASTICITY elasticity;
    @Coefs K, n;
    @tVarInt eel;
    @sVarInt evcum;
};

@StrainPart {
    sig = *elasticity*eel;
    m_tg_matrix = *elasticity;
}

@Derivative {
    TENSOR2 sprime, norm;
    double J;
    sig = *elasticity*eel;
    sprime = deviator(sig);
    J = sqrt(1.5*(sprime|sprime));
    devcum = pow(J/K, n);
    norm = sprime*(1.5/J);
    deel = deto-dvcum*norm;
}
```

Nom du comportement
Objet matrice d'élasticité
Coefficients de Norton
Variable interne tensorielle : ε_e
Variable interne scalaire : p
Calcul de la contrainte après intégration
$\sigma = \frac{E \varepsilon_e}{1-\nu}$
Matrice tangente approchée (RK !)
Calcul du vecteur dérivé $\dot{\mathbf{Y}}$
Calcul du déviateur $\dot{\sigma}$
Calcul du deuxième invariant
Fluage de Norton : $\dot{\rho} = (\frac{J}{K})^n$
Direction de l'écoulement
Déformation élastique
Implicit model implementation - ZebFront

```c
@CalcGradF {
    ELASTICITY& E=*elasticity;
    sig = E*eel;
    f_vec_eel -= deto;
    TENSOR2 sigeff = deviator(sig);
    double J = sqrt(1.5*(sigeff|sigeff));
    if (J>(double)0.0) {
        TENSOR2 norm = sigeff*(1.5/J);
        f_vec_eel += norm*devcum;
        f_vec_evcum -= dt*pow(J/K,n);
        SMATRIX dn_ds = unit32;
        dn_ds -= norm ^ norm;
        dn_ds *= theta*devcum/J;
        deel_deel += dn_ds *E;
        deel_devcum += norm;
        double dv_df = tdt*n*pow(J/K,n-1)/K;
        TENSOR2 df_fs = dv_df*norm;
        devcum_deel -= df_fs*E;
    }
}
```

Intégration implicite

\[\sigma = E \varepsilon \]

\[\text{Re} = \Delta \varepsilon - \Delta \zeta \]

Déviateur \(\sigma' \)

Deuxième invariant

Si on a plastifié

Direction de l’écoulement \(n \)

\[\text{Re} = \Delta \varepsilon - \Delta \varepsilon + \Delta p n \]

\[\Delta p = \left(\frac{f}{K} \right)^n \Delta t \]

\[\frac{\partial \text{Re}}{\partial \Delta \varepsilon} \]

\[\frac{\partial \text{Re}}{\partial \Delta p} \]

\[\frac{\partial \Delta p}{\partial \Delta \varepsilon} \]

\[\frac{\partial \Delta p}{\partial \Delta p} = 1 \]
Multimat capabilities

- Use homogenization rules
 - Localization rules
 - Local constitutive equations (possibly multimat)

- Macroscopic level (0)
 - ***behavior mori_tanaka
 - **material 0.65 matrice *file matrice.mat **material 0.35
 - fibre *file elas.mat *rotation
 - x1 0.2 0.3 0.4 x2 0.7 0.1 -0.3
 - ***return

- Material at level (1) to be defined
Multimat capabilities

Level 1
matrice.mat
***behavior berveiller_zaoui **mu 75000. **nu 0.3 **material 0.50 austenite *file austenite.mat
material 0.50 ferrite *file ferrite.mat *return
fibre.mat
***behavior linear_elastic
elasticity orthotropic y1111 100000. y2222 120000. ... y3131 90000. *return

Level 2
austenite.mat
***behavior gen_evp **elasticity isotropic young 260000. poisson 0.3 **potential gen_evp ep *flow plasticity *isotropic constant R0 130. ***return
ferrite.mat
***behavior gen_evp ... ***return
References

Nonlinear Finite Elements for Continua and Structures.

Mecanique non–linéaire des matériaux. Hermes.

Une présentation de la méthode des éléments finis. Maloine.

Computational Inelasticity. Springer Verlag.